Resonant quantum principal component analysis

نویسندگان

چکیده

Principal component analysis has been widely adopted to reduce the dimension of data while preserving information. The quantum version PCA (qPCA) can be used analyze an unknown low-rank density matrix by rapidly revealing principal components it, i.e. eigenvectors with largest eigenvalues. However, due substantial resource requirement, its experimental implementation remains challenging. Here, we develop a resonant algorithm minimal for ancillary qubits, in which only one frequency scanning probe qubit is required extract components. In experiment, demonstrate distillation first 4$\times$4 matrix, efficiency 86.0% and fidelity 0.90. This work shows speed-up ability reduction thus could as part artificial intelligence algorithms future.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum image classification using principal component analysis

We present a novel quantum algorithm for the classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.

متن کامل

Principal Component Projection Without Principal Component Analysis

We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Probabilistic Principal Component Analysis

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science Advances

سال: 2021

ISSN: ['2375-2548']

DOI: https://doi.org/10.1126/sciadv.abg2589