Resonant quantum principal component analysis
نویسندگان
چکیده
Principal component analysis has been widely adopted to reduce the dimension of data while preserving information. The quantum version PCA (qPCA) can be used analyze an unknown low-rank density matrix by rapidly revealing principal components it, i.e. eigenvectors with largest eigenvalues. However, due substantial resource requirement, its experimental implementation remains challenging. Here, we develop a resonant algorithm minimal for ancillary qubits, in which only one frequency scanning probe qubit is required extract components. In experiment, demonstrate distillation first 4$\times$4 matrix, efficiency 86.0% and fidelity 0.90. This work shows speed-up ability reduction thus could as part artificial intelligence algorithms future.
منابع مشابه
Quantum image classification using principal component analysis
We present a novel quantum algorithm for the classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملProbabilistic Principal Component Analysis
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2021
ISSN: ['2375-2548']
DOI: https://doi.org/10.1126/sciadv.abg2589